
1

Parallel Techniques for Big Data

Patrick Valduriez
INRIA,

Montpellier

2

Outline of the Talk

• Big data: problem and issues
• Parallel data processing
• Parallel architectures
• Parallel techniques
• Cloud data mgt
• NoSQL DBMS
• MapReduce
• Conclusion

3

Big Data: problem and issues

4

Big Data: what is it?

• A buzz word!
• With different meanings depending on your perspective

• E.g. 10 terabytes is big for a TP system, but small
for a web search engine

• A definition (Wikipedia)
• Consists of data sets that grow so large that they

become awkward to work with using on-hand data
management tools

• Difficulties: capture, storage, search, sharing,
analytics, visualizing

• But size is only one dimension of the problem
• How big is big?

• Moving target: terabyte (1012 bytes), petabyte (1015
bytes), exabyte (1018), zetabyte (1021)

• Landmarks in DBMS products
• 1980: Teradata database machine
• 2010: Oracle Exadata database machine

5

Why Big Data Today?

• Overwhelming amounts of data
• Generated by all kinds of devices, networks and

programs
• E.g. sensors, mobile devices, internet, social

networks, computer simulations, satellites,
radiotelescopes, etc.

• Increasing storage capacity
• Storage capacity has doubled every 3 years since 1980

with prices steadily going down
• 1 Gigabyte for: 1M$ in 1982, 1K$ in 1995, 0.12$ in

2011
• Very useful in a digital world!

• Massive data can produce high-value information and
knowledge

• Critical for data analysis, decision support, forecasting,
business intelligence, research, (data-intensive) science,
etc.

6

Some estimates

• 1,8 zetaoctets: an estimation for the data stored
by humankind in 2011

• 40 zetaoctets in 2020
• Less than 1% of big data is analyzed
• Less than 20% of big data is protected

v Source: Digital Universe study of International Data
Corporation, december 2012

7

Big Data Dimensions: the three V’s

• Volume
• Refers to massive amounts of data
• Makes it hard to store and manage, but also to

analyze (big analytics)
• Velocity

• Continuous data streams are being captured (e.g.
from sensors or mobile devices) and produced

• Makes it hard to perform online processing
• Variety

• Different data formats (sequences, graphs, arrays,
…), different semantics, uncertain data (because of
data capture), multiscale data (with lots of
dimensions)

• Makes it hard to integrate and analyze

8

Scientific Data – common features

● Big data

● Manipulated through complex, distributed
workflows

● Important metadata about experiments and their
provenance

● Mostly append-only (with rare updates)

9

Parallel Data Processing

10

The solution to big data
processing!

• Exploit a massively parallel computer
• A computer that interconnects lots of CPUs, RAM and

disk units
• To obtain

• High performance through data-based parallelism
• High throughput for OLTP loads
• Low response time for OLAP queries

• High availability and reliability through data replication
• Extensibility of the architecture

11

Extensibility : ideal goals

• Linear increase in performance
for a constant database size
and load, and proportional
increase of the system
components (CPU, memory,
disk)

• Sustained performance for a
linear increase of database
size and load, and
proportional increase of
components

perf.
ideal

Components

ideal

components
+ (db & load)

perf.

12

Data-based Parallelism

• Inter-query
• Different queries on the

same data
• For concurrent queries

• Inter-operation
• Different operations of the

same query on different
data

• For complex queries
• Intra-operation

• The same operation on
different data

• For large queries

Op3

Op1 Op2

Op

D1

Op

Dn

…

D1 D2

Q1 Qn

D

…

13

Parallel Architectures

14

Parallel Architectures for Data Management

• Three main alternatives, depending on how
processors, memory and disk are interconnected
• Shared-memory computer

• Shared-disk cluster

• Shared-nothing cluster

15

Shared-memory Computer
• All memory and disk are shared

• Symmetric Multiprocessor (SMP)
§ Non Uniform Memory Architecture

(NUMA)
§ Examples

§ IBM Numascale, HP
Proliant, Data General
NUMALiiNE, Bull
Novascale

+ Simple for apps, fast com., load
balancing

- Complex interconnect limits
extensibility, cost

P … P

M

P … P

For write-intensive workloads, expensive for big data

16

Shared-disk (SD) Cluster

Disk is shared, memory is private
§ Storage Area Network (SAN) to

interconnect memory and disk (block
level)

§ Needs distributed lock manager
(DLM) for cache coherence

§ Examples

§ Oracle RAC and Exadata
§ IBM PowerHA

+ Simple for apps, extensibility

- Complex DLM, cost

For write-intensive workloads or big data

M

P … P

M

P … P

17

Shared-nothing (SN) Cluster

M

P … P

M

P … P

No sharing of either memory or disk
across nodes

§ No need for DLM

§ But needs data partitioning

§ Examples
§ DB2 DPF, SQL Server Parallel DW,

Teradata, MySQLcluster
§ Google search engine, NoSQL key-

value stores (Bigtable, …)

+ highest extensibility, cost

-updates, distributed trans.

Perfect match for big data (read intensive)

18

Parallel Data Management Techniques

19

A Simple Model for Parallel Data

• Shared-nothing architecture
• The most general and most scalable

• Set-oriented
• Each dataset D is represented by a table of rows

• Key-value
• Each row is represented by a <key, value> pair, where

• Key uniquely identifies the value in D
• Value is a list of (attribute name : attribute value)

pairs
• Can represent structured (relational) data or

NoSQL data
• But graph is another story (see Pregel or DEX)

• Examples
• <row-id5, (part-id:5, part-name:iphone5,

supplier:Apple)>
• <doc-id10, (content:<html> html text … </html>)>
• <akeyword, (doc-id:id1, doc-id:id2, doc-id:id10)>

20

• Big datasets
• Data partitioning and indexing

• Problem with skewed data distributions
• Disk is very slow (10K times slower than RAM)

• Exploit RAM data structures and compression
• Exploit flash memory (read 10 times faster than

disk)
• Query parallelization and optimization

• Automatic if the query language is declarative (e.g.
SQL)

• Parallel algorithms for algebraic operators
• Select is easy, Join is difficult

• Programmer-assisted otherwise (e.g. MapReduce)
• Transaction support

• Hard: need for distributed transactions (distributed
locks and 2PC)

• NoSQL systems don’t provide transactions
• Fault-tolerance and availability

• With many nodes (e.g. several thousand), node failure
is the norm, not the exception

• Exploit replication and failover techniques

Design Considerations

21

Data Partitioning

Keys Values

• Vertical
• Base Basis for column

stores (e.g. MonetDB,
Vertica): efficient for
OLAP queries

• Easy to compress, e.g.
using Bloom filters

A table

• Horizontal (sharding)
• Shards can be stored

(and replicated) at
different nodes

22

Sharding Schemes

Round-Robin
• ith row to node (i mod n)

• perfect balancing
• but full scan only

••• •••

•••

•••

Hashing
• (k,v) to node h(k)

• exact-match queries
• but problem with skew

•••

Range
• (k,v) to node that holds k’s interval

• exact-match and range queries
• deals with skew

•••

•••a-g h-m u-z

23

Indexing

• Can be supported by special tables with rows of
the form: <attribute, list of keys> pairs
• Ex. <att-value, (doc-id:id1, doc-id:id2, doc-id:id10)>
• Given an attribute value, returns all corresponding

keys
• These keys can in turn be used to access the

corresponding rows in shards
• Complements sharding with secondary indices or

inverted files to speed up attribute-based queries
• Can be partitioned

24

Replication and Failover

• Replication
• The basis for fault-

tolerance and
availability

• Have several copies of
each shard

• Failover
• On a node failure,

another node detects
and recovers the node’s
tasks

Client

Node 1

connect1

Node 2Ping

connect1

25

Parallel Query Processing

1. Query parallelization
• Produces an optimized

parallel execution plan, with
operators

• Based on partitioning,
replication, indexing

2. Parallel execution
• Relies on parallel main

memory algorithms for
operators

• Use of hashed-based join
algorithms

• Adaptive degree of
partitioning to deal with
skew

Select … from R,S
where …group by…

Parallelization

Sel.

R1 R2

Sel.

R3 R4

Sel. Sel.

Join Join Join Join

S1 S2 S3 S4

Grb Grb Grb Grb

Grb

26

Parallel Hash Join Algorithm

node node node node

node 1 node 2

R1: R2: S1: S2:

• Both tables R and S are partitioned by
hashing on the join attribute

R join S = Ri join Si
i=1

p

27

Parallel DBMS

• Generic: with full support of SQL, with user
defined functions
• Structured data, XML, multimedia, etc.
• Automatic optimization and parallelization

• Transactional guarantees
• Atomicity, Consistency, Isolation, Durability
• Transactions make it easy to program complex updates

• Performance through
• Data partitioning, indexing, caching
• Sophisticated parallel algorithms, load balancing

• Two kinds
• Row-based: Oracle, MySQL, MS SQLserver, IBM DB2,

Teradata
• Column-based: MonetDB, HP Vertica

28

Main products

Vendor Product Architecture Remarks
EMC GreenPlum SN Hybrid SQL/MapReduce,

based on PostgreSQL

HP Vertica SN Column-based

IBM DB2 Pure Scale
DB2 Database Partitioning
Feature (DPF)

SD
SN

AIX on SP
Linux on cluster

Microsoft SQL Server
SQL Server Parallel Data
Warehouse

SD
SN

Windows only
Acquisition of Netezza

Oracle Real Application Cluster
Exadata Database machine
MySQL

SD
SD
SN

Portability

OSS on linux cluster

ParAccel ParAccel Analytic Database SN Column-based

Teradata Teradata Database
Aster

SN with Bynet
SN

Unix and Windows
Hybrid SQL/MapReduce
and row/column

29

Cloud Data Management

30

Cloud Data: problem and solution

• Cloud data
• Can be very large (e.g. text-based or scientific

applications), unstructured or semi-structured, and
typically append-only (with rare updates)

• Cloud users and application developers
• In very high numbers, with very diverse expertise but

very little DBMS expertise

Therefore, current cloud data management solutions
trade consistency for scalability, simplicity and
flexibility

• New file systems: GFS, HDFS, …
• NOSQL systems: Amazon SimpleDB, Google Base,

Google Bigtable, Yahoo Pnuts, etc.
• New parallel programming: Google MapReduce (and its

many variations)

31

Google File System (GFS)

• Used by many Google applications
• Search engine, Bigtable, Mapreduce, etc.

• The basis for Hadoop HDFS (Apache & Yahoo)
• Optimized for specific needs

• Shared-nothing cluster of thousand nodes, built from
inexpensive harware => node failure is the norm!

• Very large files, of typically several GB, containing
many objects such as web documents

• Mostly read and append (random updates are rare)
• Large reads of bulk data (e.g. 1 MB) and small

random reads (e.g. 1 KB)
• Append operations are also large and there may be

many concurrent clients that append the same file
• High throughput (for bulk data) more important

than low latency

32

Design Choices

• Traditional file system interface (create, open,
read, write, close, and delete file)
• Two additional operations: snapshot and record

append.
• Relaxed consistency, with atomic record append

• No need for distributed lock management
• Up to the application to use techniques such as

checkpointing and writing self-validating records
• Single GFS master

• Maintains file metadata such as namespace, access
control information, and data placement information

• Simple, lightly loaded, fault-tolerant
• Fast recovery and replication strategies

33

GFS Distributed Architecture

• Files are divided in fixed-size partitions, called
chunks, of large size, i.e. 64 MB, each replicated at
several nodes

Application

GFS client

Get chunk location

Get chunk data
GFS chunk server

Linux file system

GFS
Master

GFS chunk server

Linux file system

34

NoSQL Systems

35

NOSQL (Not Only SQL): definition

• Specific DBMS: for web-based data
• Specialized data model

• Key-value, table, document, graph
• Trade relational DBMS properties

• Full SQL, ACID transactions, data independence
• For

• Simplicity (schema, basic API)
• Scalability and performance
• Flexibility for the programmer (integration with

programming language)

• NB: SQL is just a language and has nothing to
do with the story

36

NoSQL Approaches

• Characterized by the data model, in increasing
order of complexity:

1. key-value: Amazon DynamoDB and SimpleDB
2. big table: Google Bigtable
3. document: 10gen MongoDB
4. graph: Neo4J

• What about object DBMS or XML DBMS?
•. Were there much before NoSQL
•. Sometimes presented as NoSQL
•. But not really scalable

37

Key-value store: DynamoDB

• The basis for many systems
• Cassandra, Voldemort

• Simple (key, value) data model
• Key = unique id
• Value = a small object (< 1 Mbyte)

• Simple queries
• Put (key, value)
• Get (key)

• Replication and eventual consistency
• If no more updates, the replicas get mutually consistent

• No security
• Assumes the environment is secured (cloud)

• High availability, performance and scalability using
P2P techniques in a SN cluster
• Consistent hashing for data partitioning
• Gossip for detecting node failures

• Integration with MapReduce

38

DynamoDB – consistent hashing

• Hash-based
partitioning

• The interval of hash
values is treated as a
ring
• Ex. Node B is resp. for

interval [A,B]
• Advantage: if a node

fails, its successor
takes over its data
• No impact on other

nodes
• Data is replicated on

next nodes

A

B

CD

E

F h(c)

put(c,v)

X

39

Google Bigtable

• Database storage system for a shared-nothing
cluster
• Uses GFS to store structured data, with fault-tolerance

and availability
• Used by popular Google applications

• Google Earth, Google Analytics, Google+, etc.
• The basis for popular Open Source

implementations
• Hadoop Hbase on top of HDFS (Apache & Yahoo)

• Specific data model that combines aspects of row-
store and column-store DBMS
• Rows with multi-valued, timestamped attributes

• A Bigtable is defined as a multidimensional map,
indexed by a row key, a column key and a
timestamp, each cell of the map being a single value
(a string)

• Dynamic partitioning of tables for scalability

40

A Bigtable Row

Row key Contents: Anchor: Language:

"google.com"

"google.com"

"Google"

"<html>…<\html>"
"com.google.www" "english"

"<html>…<\html>"

inria.fr

t5

t1t2

t3

t4

t1

uwaterloo.ca

Row unique id Column family Column key

Column family = a kind of multi-valued attribute
• Set of columns (of the same type), each identified by a

key
- Colum key = attribute value, but used as a name

• Unit of access control and compression

41

Bigtable DDL and DML

• No such thing as SQL
• Basic API for defining and manipulating tables,

within a programming language such as C++
• No impedance mismatch
• Various operators to write and update values, and to

iterate over subsets of data, produced by a scan
operator

• Various ways to restrict the rows, columns and
timestamps produced by a scan, as in relational
select, but no complex operator such as join or union

• Transactional atomicity for single row updates only

42

Dynamic Range Partitioning

• Range partitioning of a table on the row key
• Tablet = a partition (shard) corresponding to a row

range
• Partitioning is dynamic, starting with one tablet (the

entire table range) which is subsequently split into
multiple tablets as the table grows

• Metadata table itself partitioned in metadata tablets,
with a single root tablet stored at a master server,
similar to GFS’s master

• Implementation techniques
• Compression of column families
• Grouping of column families with high locality of access
• Aggressive caching of metadata information by clients

43

Document DBMS: MongoDB

• Objectives: performance and scalability as
in (key, value) stores, but with typed
• A document is a collection of (key, typed

value) with a unique key (generated by
MongoDB)

• Data model and query language based on
the BSON (Binary JSON) format

• No schema, no join, no complex
transaction

• Sharding, replication and failover
• Secondary indices
• Integration with MapReduce

44

MongoDB – document (post) example

 { _id : ObjectId("4e77bb3b8a3e000000004f7a"),
 when : Date("2012-09-19T02:10:11.3Z"),
 author : "alex",
 title : "No Free Lunch",
 text : "This is the text of the post. It could be very long.",
 tags : ["business", "ramblings"],
 votes : 5, voters : ["jane", "joe", "spencer", "phyllis", "li"],
 comments :
 [{ who : "jane",
 when : Date("2012-09-19T04:00:10.112Z"),
 comment : "I agree." },
 { who : "meghan",
 when : Date("2012-09-20T14:36:06.958Z"),
 comment : "You must be joking. etc etc ..." }
] }

Arrays of Documents

Arrays

Generated by MongoDB

45

MongoDB – query language

• Expression of the form
• db.nomBD.fonction (JSON expression)

• Update examples
• db.posts.insert({author:’alex’, title:’No Free Lunch’})
• db.posts.update({author:’alex’, {$set:{age:30}})
• db.posts.update({author:’alex’, {$push:{tags:’music’}})

• Select examples
• db.posts.find({author:"alex"})

• All posts from Alex
• db.posts.find({comments.who:"jane"})

• All posts commented by Jane

46

Graph DBMS: Neo4J

• Applications with very big graphs
• Billions of nodes and links
• Social networks, hypertext documents,

linked open data, etc.
• Direct support of graphs

• Data model, API, query language
• Implemented by linked lists on disk
• Optimized for graph processing
• Transactions

• Implemented on SN cluster
• Asymmetric replication
• Graph partitioning

47

Neo4J – data model

Ex. of Neo transaction

NeoService neo = … // factory

Transaction tx = neo.beginTx();

Node n1 = neo.CreateNode();

n1.setProperty("name", "Bob");

n1.setProperty("age", 35);

Node n2 = neo.createNode();

n2.setProperty("name", "Mary");

n2.setProperty("age", 29);

n2.setProperty("job",
"engineer");

n1.createRelationshipTo(n2,
RelTypes.friend);

tx.Commit();

• Nodes
• Links between nodes
• Properties on nodes and

links

Mary
29

Eng.

Bob
35

friend

Group
Tennis

likes
member-of

members

48

Neo4J - languages

Ex. of Cypher query that returns
the (indirect) friends of Bob whose
name starts with "M"

START
bob=node:node_auto_index
(name = 'Bob')

MATCH bob-[:friend]->()-
[:friend]->follower

WHERE follower.name =~ 'M.*’

RETURN bob, follower.name

• Java API (navigational)
• Cypher query language

• Queries and updates
with graph traversals

• Support of SparQL for
RDF data

49

Main NoSQL Systems
Vendor Product Category Comments

Amazon Dynamo
SimpleDB

KV Proprietary

Apache Cassandra
Accumulo

KV
Big table

Open source, Origin Facebook
Open source, Origin NSA

Armadillo S.A. Armadillo Document Proprietary, security

Google Bigtable
Pregel

Big table
Graph

Proprietary, patents

Hadoop Hbase Big table Open source, Orig. Yahoo

LinkedIn Voldemort KV Open source

10gen MongoDB Document Open source

Neo4J.org Neo4J Graph Open source

Sparcity DEX Graph Proprietary, Orig. UPC, Barcelone

Ubuntu CouchDB Document Open source

50

NoSQL versus Relational

• The techniques are not new
• Database machines, SN cluster
• But very large scale

• Pros NoSQL
• Scalability, performance
• APIs suitable for programming

• Pros Relational
• Strong consistency, transactions
• Standard SQL (many tools)

• Towards NoSQL/Relational hybrids?
• Google F1: “combines the scalability, fault tolerance,

transparent sharding, and cost benefits so far available
only in NoSQL systems with the usability, familiarity,
and transactional guarantees expected from an RDBMS”

51

MapReduce

52

MapReduce Framework

• Invented by Google
• Proprietary (and protected by software patents)
• But popular Open Source version by Hadoop (Apache

& Yahoo)
• For data analysis of very large data sets

• Highly dynamic, irregular, schemaless, etc.
• SQL or Xquery too heavy

• New, simple parallel programming model
• Data structured as (key, value) pairs

• E.g. (doc-id, content), (word, count), etc.
• Functional programming style with two functions to be

given:
• Map(key, value) -> ikey, ivalue
• Reduce(ikey, list (ivalue)) –> list(fvalue)

• Implemented on GFS on very large clusters
• The basis for popular implementations

• Hadoop, Hadoop++, Amazon MapReduce, etc.

53

MapReduce Typical Usages

• Counting the numbers of some words in a set of
docs

• Distributed grep: text pattern matching
• Counting URL access frequencies in Web logs
• Computing a reverse Web-link graph
• Computing the term-vectors (summarizing the

most important words) in a set of documents
• Computing an inverted index for a set of

documents
• Distributed sorting

54

MapReduce Processing

Map

…

(k1,v)
(k2,v)

Group
by k

Map
(k2,v)
(k2,v)

Map (k1,v)

Map
(k1,v)
(k2,v)

(k1,(v,v,v))

(k2,(v,v,v,v))

Reduce

Reduce

Group
by k

In
pu

t d
at

a
se

t

O
ut

pu
t d

at
a

se
t

• Simple programming model
• Key-value data storage
• Hash-based data partitioning

Reduce phaseShuffle phaseMap phase

Split 0

Split 1

Split 2

55

MapReduce Example

EMP (ENAME, TITLE, CITY)
Query: for each city, return the number of
employees whose name is "Smith"

SELECT CITY, COUNT(*)
FROM EMP
WHERE ENAME LIKE "\%Smith"
GROUP BY CITY

With MapReduce

Map (Input (TID,emp), Output: (CITY,1))
if emp.ENAME like "%Smith" return (CITY,1)

Reduce (Input (CITY,list(1)), Output:
(CITY,SUM(list(1)))
 return (CITY,SUM(1*))

56

Fault-tolerance

• Fault-tolerance is fine-grain and well suited for
large jobs

• Input and output data are stored in GFS
• Already provides high fault-tolerance

• All intermediate data is written to disk
• Helps checkpointing Map operations, and thus provides

tolerance from soft failures
• If one Map node or Reduce node fails during

execution (hard failure)
• The tasks are made eligible by the master for

scheduling onto other nodes
• It may also be necessary to re-execute completed Map

tasks, since the input data on the failed node disk is
inaccessible

57

MapReduce vs Parallel DBMS

• [Pavlo et al. SIGMOD09]: Hadoop MapReduce vs
two parallel DBMS, one row-store DBMS and one
column-store DBMS
• Benchmark queries: a grep query, an aggregation query

with a group by clause on a Web log, and a complex join
of two tables with aggregation and filtering

• Once the data has been loaded, the DBMS are
significantly faster, but loading is much time consuming
for the DBMS

• Suggest that MapReduce is less efficient than DBMS
because it performs repetitive format parsing and does
not exploit pipelining and indices

• [Dean and Ghemawat, CACM10]
• Make the difference between the MapReduce model and

its implementation which could be well improved, e.g. by
exploiting indices

• [Stonebraker et al. CACM10]
• Argues that MapReduce and parallel DBMS are

complementary as MapReduce could be used to extract-
transform-load data in a DBMS for more complex OLAP.

58

MapReduce Performance

• Much room for improvement (see MapReduce
workshops)
• Map phase

• Minimize I/0 cost using indices (Hadoop++)
• Shuffle phase

• Minimize data transfers by partitioning data on the
same intermediate key

• Current work in Zenith
• Reduce phase

• Exploit fine-grain parallelism of Reduce tasks
• Current work in Zenith

59

Conclusion

60

Research Directions

• Basic techniques are not new
• Parallel database machines, shared-nothing cluster
• Data partitioning, replication, indexing, parallel hash

join, etc.
• But need to scale up

• Much room for research and innovation
• MapReduce extensions
• Dynamic workload-based partitioning
• Data-oriented scientific workflows
• Uncertain data mining
• Content-based IR
• Data privacy

	Slide 1
	Slide 2
	Slide 3
	Big Data: what is it?
	Why Big Data Today?
	Some estimates
	Big Data Dimensions: the three V’s
	Scientific Data – common features
	Slide 9
	The solution to big data processing!
	Extensibility : ideal goals
	Data-based Parallelism
	Slide 13
	Parallel Architectures for Data Management
	Shared-memory Computer
	Shared-disk (SD) Cluster
	Shared-nothing (SN) Cluster
	Slide 18
	A Simple Model for Parallel Data
	Design Considerations
	Data Partitioning
	Sharding Schemes
	Indexing
	Replication and Failover
	Parallel Query Processing
	Parallel Hash Join Algorithm
	Parallel DBMS
	Main products
	Slide 29
	Cloud Data: problem and solution
	Google File System (GFS)
	Design Choices
	GFS Distributed Architecture
	Slide 34
	NOSQL (Not Only SQL): definition
	NoSQL Approaches
	Key-value store: DynamoDB
	DynamoDB – consistent hashing
	Google Bigtable
	A Bigtable Row
	Bigtable DDL and DML
	Dynamic Range Partitioning
	Document DBMS: MongoDB
	MongoDB – document (post) example
	MongoDB – query language
	Graph DBMS: Neo4J
	Neo4J – data model
	Neo4J - languages
	Main NoSQL Systems
	NoSQL versus Relational
	Slide 51
	MapReduce Framework
	MapReduce Typical Usages
	MapReduce Processing
	MapReduce Example
	Fault-tolerance
	MapReduce vs Parallel DBMS
	MapReduce Performance
	Slide 59
	Research Directions

