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Big Data: problem and issues
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Big Data: what is it?

• A buzz word!
• With different meanings depending on your perspective

• E.g. 10 terabytes is big for a TP system, but small 
for a web search engine

• A definition (Wikipedia)
• Consists of data sets that grow so large that they 

become awkward to work with using on-hand data 
management tools

• Difficulties: capture, storage, search, sharing, 
analytics, visualizing

• But size is only one dimension of the problem
• How big is big?

• Moving target: terabyte (1012 bytes), petabyte (1015 
bytes), exabyte (1018), zetabyte (1021)

• Landmarks in DBMS products
• 1980: Teradata database machine
• 2010: Oracle Exadata database machine
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Why Big Data Today?

• Overwhelming amounts of data
• Generated by all kinds of devices, networks and 

programs
• E.g. sensors, mobile devices, internet, social 

networks, computer simulations, satellites, 
radiotelescopes, etc.

• Increasing storage capacity
• Storage capacity has doubled every 3 years since 1980 

with prices steadily going down
• 1 Gigabyte for: 1M$ in 1982, 1K$ in 1995, 0.12$ in 

2011
• Very useful in a digital world!

• Massive data can produce high-value information and 
knowledge

• Critical for data analysis, decision support, forecasting, 
business intelligence, research, (data-intensive) science, 
etc.
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Some estimates

• 1,8 zetaoctets: an estimation for the data stored 
by humankind in 2011

• 40 zetaoctets in 2020
• Less than 1% of big data is analyzed
• Less than 20% of big data is protected

v Source: Digital Universe study of International Data 
Corporation, december 2012



7

Big Data Dimensions: the three V’s

• Volume
• Refers to massive amounts of data
• Makes it hard to store and manage, but also to 

analyze (big analytics)
• Velocity

• Continuous data streams are being captured (e.g. 
from sensors or mobile devices) and produced

• Makes it hard to perform online processing
• Variety

• Different data formats (sequences, graphs, arrays, 
…), different semantics, uncertain data (because of 
data capture), multiscale data (with lots of 
dimensions)

• Makes it hard to integrate and analyze
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Scientific Data – common features

● Big data

● Manipulated through complex, distributed 
workflows

● Important metadata about experiments and their 
provenance

● Mostly append-only (with rare updates)
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Parallel Data Processing
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The solution to big data 
processing!

• Exploit a massively parallel computer
• A computer that interconnects lots of CPUs, RAM and 

disk units
• To obtain

• High performance through data-based parallelism
• High throughput for OLTP  loads
• Low response time for OLAP queries

• High availability and reliability through data replication
• Extensibility of the architecture
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Extensibility : ideal goals

• Linear increase in performance 
for a constant database size 
and load, and proportional 
increase of the system 
components (CPU, memory, 
disk)

• Sustained performance for a 
linear increase of database 
size and load,  and 
proportional increase of 
components

perf.
ideal

Components

ideal

components
+ (db & load)

perf.
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Data-based Parallelism

• Inter-query
• Different queries on the 

same data
• For concurrent queries 

• Inter-operation
• Different operations of the 

same query on different 
data

• For complex queries
• Intra-operation

• The same operation on 
different data

• For large queries

Op3

Op1 Op2

Op

D1

Op

Dn

…

D1 D2

Q1 Qn

D

…
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Parallel Architectures
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Parallel Architectures for Data Management

• Three main alternatives, depending on how 
processors, memory and disk are interconnected
• Shared-memory computer

• Shared-disk cluster

• Shared-nothing cluster
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Shared-memory Computer
• All memory and disk are shared

• Symmetric Multiprocessor (SMP)
§ Non Uniform Memory Architecture 

(NUMA)
§ Examples

§ IBM Numascale, HP 
Proliant, Data General 
NUMALiiNE, Bull 
Novascale 

+  Simple for apps, fast com., load 
balancing

-  Complex interconnect limits 
extensibility, cost

P … P

M

P … P

For write-intensive workloads, expensive for big data
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Shared-disk (SD) Cluster

Disk is shared, memory is private
§ Storage Area Network (SAN) to 

interconnect memory and disk (block 
level)

§ Needs distributed lock manager 
(DLM) for cache coherence

§ Examples

§ Oracle RAC and Exadata
§ IBM PowerHA

+  Simple for apps, extensibility

-  Complex DLM, cost

For write-intensive workloads or big data

M

P … P

M

P … P
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Shared-nothing (SN) Cluster

M

P … P

M

P … P

No sharing of either memory or disk 
across nodes

§ No need for DLM

§ But needs data partitioning

§ Examples
§ DB2 DPF, SQL Server Parallel DW, 

Teradata, MySQLcluster
§ Google search engine, NoSQL key-

value stores (Bigtable, …)

+ highest extensibility, cost

-updates, distributed trans.

Perfect match for big data (read intensive)
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Parallel Data Management Techniques
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A Simple Model for Parallel Data

• Shared-nothing architecture
• The most general and most scalable

• Set-oriented
• Each dataset D is represented by a table of rows

• Key-value
• Each row is represented by a <key, value> pair, where

• Key uniquely identifies the value in D
• Value is a list of (attribute name : attribute value) 

pairs
• Can represent structured (relational) data or 

NoSQL data
• But graph is another story (see Pregel or DEX)

• Examples
• <row-id5, (part-id:5, part-name:iphone5, 

supplier:Apple)>
• <doc-id10, (content:<html> html text … </html>)>
• <akeyword, (doc-id:id1, doc-id:id2, doc-id:id10)>
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• Big datasets
• Data partitioning and indexing

• Problem with skewed data distributions
• Disk is very slow (10K times slower than RAM)

• Exploit RAM data structures and compression
• Exploit flash memory (read 10 times faster than 

disk)
• Query parallelization and optimization

• Automatic if the query language is declarative (e.g. 
SQL)

• Parallel algorithms for algebraic operators
• Select is easy, Join is difficult

• Programmer-assisted otherwise (e.g. MapReduce)
• Transaction support

• Hard: need for distributed transactions (distributed 
locks and 2PC)

• NoSQL systems don’t provide transactions
• Fault-tolerance and availability

• With many nodes (e.g. several thousand), node failure 
is the norm, not the exception

• Exploit replication and failover techniques

Design Considerations
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Data Partitioning

Keys Values

• Vertical
• Base Basis for column 

stores (e.g. MonetDB, 
Vertica): efficient for 
OLAP queries

• Easy to compress, e.g. 
using Bloom filters

A table

• Horizontal (sharding)
• Shards can be stored 

(and replicated) at 
different nodes
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Sharding Schemes

Round-Robin
•  ith row to node (i mod n)

•  perfect balancing
•  but full scan only

••• •••

•••

•••

Hashing
•  (k,v) to node h(k)

•  exact-match queries
•  but problem with skew

•••

Range
•  (k,v) to node that holds k’s interval

•  exact-match and range queries
•  deals with skew

•••

•••a-g h-m u-z
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Indexing

• Can be supported by special tables with rows of 
the form: <attribute, list of keys> pairs
• Ex. <att-value, (doc-id:id1, doc-id:id2, doc-id:id10)>
• Given an attribute value, returns all corresponding 

keys
• These keys can in turn be used to access the 

corresponding rows in shards
• Complements sharding with secondary indices or 

inverted files to speed up attribute-based queries
• Can be partitioned 
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Replication and Failover

• Replication
• The basis for fault-

tolerance and 
availability

• Have several copies of 
each shard

• Failover
• On a node failure, 

another node detects 
and recovers the node’s 
tasks

Client

Node 1

connect1

Node 2Ping

connect1
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Parallel Query Processing

1. Query parallelization
• Produces an optimized 

parallel execution plan, with 
operators

• Based on partitioning, 
replication, indexing

2. Parallel execution
• Relies on parallel main 

memory algorithms for 
operators

• Use of hashed-based join 
algorithms

• Adaptive degree of 
partitioning to deal with 
skew

Select … from R,S
where …group by…

Parallelization

Sel.

R1 R2

Sel.

R3 R4

Sel. Sel.

Join Join Join Join

S1 S2 S3 S4

Grb Grb Grb Grb

Grb
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Parallel Hash Join Algorithm

node node node node

node 1 node 2

R1: R2: S1: S2:

• Both tables R and S are partitioned by 
hashing on the join attribute

R join S =        Ri join Si
i=1

p



27

Parallel DBMS

• Generic: with full support of SQL, with user 
defined functions 
• Structured data, XML, multimedia, etc.
• Automatic optimization and parallelization

• Transactional guarantees
• Atomicity, Consistency, Isolation, Durability
• Transactions make it easy to program complex updates

• Performance through
• Data partitioning, indexing, caching
• Sophisticated parallel algorithms, load balancing

• Two kinds
• Row-based: Oracle, MySQL, MS SQLserver, IBM DB2, 

Teradata 
• Column-based: MonetDB, HP Vertica
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Main products

Vendor Product Architecture Remarks
EMC GreenPlum SN Hybrid SQL/MapReduce, 

based on PostgreSQL

HP Vertica SN Column-based

IBM DB2 Pure Scale
DB2 Database Partitioning 
Feature (DPF)

SD
SN

AIX on SP
Linux on cluster

Microsoft SQL Server
SQL Server Parallel Data 
Warehouse

SD
SN

Windows only
Acquisition of Netezza

Oracle Real Application Cluster
Exadata Database machine
MySQL

SD
SD
SN

Portability

OSS on linux cluster

ParAccel ParAccel Analytic Database SN Column-based

Teradata Teradata Database
Aster

SN with Bynet
SN

Unix and Windows
Hybrid SQL/MapReduce 
and row/column
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Cloud Data Management
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Cloud Data: problem and solution

• Cloud data
• Can be very large (e.g. text-based or scientific 

applications), unstructured or semi-structured, and 
typically append-only (with rare updates)

•  Cloud users and application developers
• In very high numbers, with very diverse expertise but 

very little DBMS expertise

Therefore, current cloud data management solutions 
trade consistency for scalability, simplicity and 
flexibility

• New file systems: GFS, HDFS, …
• NOSQL systems: Amazon SimpleDB, Google Base, 

Google Bigtable, Yahoo Pnuts, etc.
• New parallel programming: Google MapReduce (and its 

many variations)
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Google File System (GFS)

• Used by many Google applications
• Search engine, Bigtable, Mapreduce, etc.

• The basis for Hadoop HDFS (Apache & Yahoo)
• Optimized for specific needs

• Shared-nothing cluster of thousand nodes, built from 
inexpensive harware => node failure is the norm!

• Very large files, of typically several GB, containing 
many objects such as web documents

• Mostly read and append (random updates are rare)
• Large reads of bulk data (e.g. 1 MB) and small 

random reads (e.g. 1 KB)
• Append operations are also large and there may be 

many concurrent clients that append the same file
• High throughput (for bulk data) more important 

than low latency
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Design Choices

• Traditional file system interface (create, open, 
read, write, close, and delete file)
• Two additional operations: snapshot and record 

append. 
• Relaxed consistency, with atomic record append

• No need for distributed lock management
• Up to the application to use techniques such as 

checkpointing and writing self-validating records
• Single GFS master

• Maintains file metadata such as namespace, access 
control information, and data placement information

• Simple, lightly loaded, fault-tolerant
• Fast recovery and replication strategies
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GFS Distributed Architecture

• Files are divided in fixed-size partitions, called 
chunks, of large size, i.e. 64 MB, each replicated at 
several nodes

Application

GFS client

Get chunk location

Get chunk data
GFS chunk server

Linux file system

GFS
Master

GFS chunk server

Linux file system
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NoSQL Systems
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NOSQL (Not Only SQL): definition

• Specific DBMS: for web-based data
• Specialized data model

• Key-value, table, document, graph
• Trade relational DBMS properties

• Full SQL, ACID transactions, data independence
• For 

• Simplicity (schema, basic API)
• Scalability and performance
• Flexibility for the programmer (integration with 

programming language)

• NB: SQL is just a language and has nothing to 
do with the story
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NoSQL Approaches 

• Characterized by the data model, in increasing 
order of complexity:

1. key-value: Amazon DynamoDB and SimpleDB
2. big table: Google Bigtable
3. document: 10gen MongoDB
4. graph: Neo4J

• What about object DBMS or XML DBMS?
•. Were there much before NoSQL
•. Sometimes presented as NoSQL
•. But not really scalable
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Key-value store: DynamoDB

• The basis for many systems
• Cassandra, Voldemort

• Simple (key, value) data model
• Key = unique id
• Value = a small object (< 1 Mbyte)

• Simple queries
• Put (key, value)
• Get (key)

• Replication and eventual consistency
• If no more updates, the replicas get mutually consistent

• No security
• Assumes the environment is secured (cloud)

• High availability, performance and scalability using 
P2P techniques in a SN cluster
• Consistent hashing for data partitioning
• Gossip for detecting node failures 

• Integration with MapReduce



38

DynamoDB – consistent hashing

• Hash-based 
partitioning

• The interval of hash 
values is treated as a 
ring
• Ex. Node B is resp. for 

interval [A,B]
• Advantage: if a node 

fails, its successor 
takes over its data
• No impact on other 

nodes
• Data is replicated on 

next nodes

A

B

CD

E

F h(c)

put(c,v)

X
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Google Bigtable

• Database storage system for a shared-nothing 
cluster
• Uses GFS to store structured data, with fault-tolerance 

and availability
• Used by popular Google applications

• Google Earth, Google Analytics, Google+, etc.
• The basis for popular Open Source 

implementations
• Hadoop Hbase on top of HDFS (Apache & Yahoo)

• Specific data model that combines aspects of row-
store and column-store DBMS
• Rows with multi-valued, timestamped attributes

• A Bigtable is defined as a multidimensional map, 
indexed by a row key, a column key and a 
timestamp, each cell of the map being a single value 
(a string)

• Dynamic partitioning of tables for scalability
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A Bigtable Row

Row key                          Contents:                      Anchor:              Language:

"google.com"

"google.com"

"Google"

"<html>…<\html>"
"com.google.www" "english"

"<html>…<\html>"

inria.fr

t5

t1t2

t3

t4

t1

uwaterloo.ca

Row unique id Column family Column key

Column family = a kind of multi-valued attribute
•  Set of columns (of the same type), each identified by a 

key
- Colum key = attribute value, but used as a name 

•  Unit of access control and compression
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Bigtable DDL and DML

• No such thing as SQL
• Basic API for defining and manipulating tables, 

within a programming language such as C++
• No impedance mismatch
• Various operators to write and update values, and to 

iterate over subsets of data, produced by a scan 
operator

• Various ways to restrict the rows, columns and 
timestamps produced by a scan, as in relational 
select, but no complex operator such as join or union

• Transactional atomicity  for single row updates only
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Dynamic Range Partitioning

• Range partitioning of a table on the row key
• Tablet =  a partition (shard) corresponding to a row 

range
• Partitioning is dynamic, starting with one tablet (the 

entire table range) which is subsequently split into 
multiple tablets as the table grows

• Metadata table itself partitioned in metadata tablets, 
with a single root tablet stored at a master server, 
similar to GFS’s master

• Implementation techniques
• Compression of column families
• Grouping of column families with high locality of access
• Aggressive caching of metadata information by clients
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Document DBMS: MongoDB

• Objectives: performance and scalability  as 
in (key, value) stores, but with typed
• A document is a collection of (key, typed 

value) with a unique key (generated by 
MongoDB)

• Data model and query language based on 
the BSON (Binary JSON) format

• No schema, no join, no complex 
transaction

• Sharding, replication and failover
• Secondary indices
• Integration with MapReduce
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MongoDB – document (post) example

 { _id : ObjectId("4e77bb3b8a3e000000004f7a"),  
 when : Date("2012-09-19T02:10:11.3Z"),
 author : "alex",
 title : "No Free Lunch",
 text : "This is the text of the post. It could be very long.", 
 tags : [ "business", "ramblings" ], 
 votes : 5, voters : [ "jane", "joe", "spencer", "phyllis", "li" ], 
 comments :
 [ { who : "jane", 
      when : Date("2012-09-19T04:00:10.112Z"), 
      comment : "I agree." },
    { who : "meghan", 
       when : Date("2012-09-20T14:36:06.958Z"), 
       comment : "You must be joking. etc etc ..." } 
] }

Arrays of Documents

Arrays

Generated by MongoDB
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MongoDB – query language

• Expression of the form
• db.nomBD.fonction (JSON expression)

• Update examples
• db.posts.insert({author:’alex’, title:’No Free Lunch’})
• db.posts.update({author:’alex’, {$set:{age:30}})
• db.posts.update({author:’alex’, {$push:{tags:’music’}})

• Select examples
• db.posts.find({author:"alex"})

• All posts from Alex
• db.posts.find({comments.who:"jane"})

• All posts commented by Jane 
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Graph DBMS: Neo4J

• Applications with very big graphs
• Billions of nodes and links
• Social networks, hypertext documents, 

linked open data, etc. 
• Direct support of graphs

• Data model, API, query language
• Implemented by linked lists on disk
• Optimized for graph processing
• Transactions

• Implemented on SN cluster
• Asymmetric replication
• Graph partitioning
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Neo4J – data model

Ex. of Neo transaction

NeoService neo = … // factory

Transaction tx = neo.beginTx();

Node n1 = neo.CreateNode();

n1.setProperty("name", "Bob");

n1.setProperty("age", 35);

Node n2 = neo.createNode();

n2.setProperty("name", "Mary");

n2.setProperty("age", 29);

n2.setProperty("job", 
"engineer");

n1.createRelationshipTo(n2, 
RelTypes.friend);

tx.Commit();

• Nodes
• Links between nodes
• Properties on nodes and 

links

Mary
29

Eng.

Bob
35

friend

Group
Tennis

likes
member-of

members
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Neo4J - languages

Ex. of Cypher query that returns 
the (indirect) friends of Bob whose 
name starts with "M"

START 
bob=node:node_auto_index 
(name = 'Bob')

MATCH bob-[:friend]->()-
[:friend]->follower

WHERE follower.name =~ 'M.*’

RETURN bob, follower.name

• Java API (navigational)
• Cypher query language

• Queries and updates 
with graph traversals

• Support of SparQL for 
RDF data
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Main NoSQL Systems
Vendor Product Category Comments

Amazon Dynamo
SimpleDB

KV Proprietary

Apache Cassandra
Accumulo

KV
Big table

Open source, Origin Facebook
Open source, Origin NSA

Armadillo S.A. Armadillo Document Proprietary, security

Google Bigtable
Pregel

Big table
Graph

Proprietary, patents

Hadoop Hbase Big table Open source, Orig. Yahoo

LinkedIn Voldemort KV Open source 

10gen MongoDB Document Open source

Neo4J.org Neo4J Graph Open source

Sparcity DEX Graph Proprietary, Orig. UPC, Barcelone

Ubuntu CouchDB Document Open source



50

NoSQL versus Relational

• The techniques are not new
• Database machines, SN cluster 
• But very large scale

• Pros NoSQL
• Scalability, performance
• APIs suitable for programming

• Pros Relational
• Strong consistency, transactions
• Standard SQL (many tools)

• Towards NoSQL/Relational hybrids?
• Google F1: “combines the scalability, fault tolerance, 

transparent sharding, and cost benefits so far available 
only in NoSQL systems with the usability, familiarity, 
and transactional guarantees expected from an RDBMS”
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MapReduce
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MapReduce Framework

• Invented by Google
• Proprietary (and protected by software patents)
• But popular Open Source version by Hadoop (Apache 

& Yahoo)
• For data analysis of very large data sets

• Highly dynamic, irregular, schemaless, etc.
• SQL or Xquery too heavy

• New, simple parallel programming model
• Data structured as (key, value) pairs

• E.g. (doc-id, content), (word, count), etc.
• Functional programming style with two functions to be 

given:
• Map(key, value) -> ikey, ivalue
• Reduce(ikey, list (ivalue)) –> list(fvalue)

• Implemented on GFS on very large clusters
• The basis for popular implementations

• Hadoop, Hadoop++, Amazon MapReduce, etc.
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MapReduce Typical Usages

• Counting the numbers of some words in a set of 
docs

• Distributed grep: text pattern matching
• Counting URL access frequencies in Web logs
• Computing a reverse Web-link graph
• Computing the term-vectors (summarizing the 

most important words) in a set of documents
• Computing an inverted index for a set of 

documents
• Distributed sorting
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MapReduce Processing

Map

…

(k1,v)
(k2,v)

Group
by k

Map
(k2,v)
(k2,v)

Map (k1,v)

Map
(k1,v)
(k2,v)

(k1,(v,v,v))

(k2,(v,v,v,v))

Reduce

Reduce

Group
by k

In
pu

t d
at

a 
se

t

O
ut

pu
t d

at
a 

se
t

• Simple programming model
• Key-value data storage
• Hash-based data partitioning

Reduce phaseShuffle phaseMap phase

Split 0

Split 1

Split 2
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MapReduce Example

EMP (ENAME, TITLE, CITY)
Query: for each city, return the number of 
employees whose name is "Smith"

SELECT CITY, COUNT(*)
FROM EMP
WHERE  ENAME LIKE "\%Smith"
GROUP BY CITY

 
With MapReduce

Map (Input (TID,emp), Output: (CITY,1))
if emp.ENAME like "%Smith" return (CITY,1)

Reduce (Input (CITY,list(1)), Output: 
(CITY,SUM(list(1))) 
   return (CITY,SUM(1*))
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Fault-tolerance

• Fault-tolerance is fine-grain and well suited for 
large jobs

• Input and output data are stored in GFS
• Already provides high fault-tolerance

• All intermediate data is written to disk
• Helps checkpointing Map operations, and thus provides 

tolerance from soft failures
• If one Map node or Reduce node fails during 

execution (hard failure)
• The tasks are made eligible by the master for 

scheduling onto other nodes
• It may also be necessary to re-execute completed Map 

tasks, since the input data on the failed node disk is 
inaccessible
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MapReduce vs Parallel DBMS

• [Pavlo et al. SIGMOD09]: Hadoop MapReduce vs 
two parallel DBMS, one row-store DBMS and one 
column-store DBMS
• Benchmark queries: a grep query, an aggregation query 

with a group by clause on a Web log, and a complex join 
of two tables with aggregation and filtering

• Once the data has been loaded, the DBMS are 
significantly faster, but loading is much time consuming 
for the DBMS

• Suggest that MapReduce is less efficient than DBMS 
because it performs repetitive format parsing and does 
not exploit pipelining and indices

• [Dean and Ghemawat, CACM10]
• Make the difference between the MapReduce model and 

its implementation which could be well improved, e.g. by 
exploiting indices

• [Stonebraker et al. CACM10]
• Argues that MapReduce and parallel DBMS are 

complementary as MapReduce could be used to extract-
transform-load data in a DBMS for more complex OLAP.
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MapReduce Performance

• Much room for improvement (see MapReduce 
workshops)
• Map phase

• Minimize I/0 cost using indices (Hadoop++)
• Shuffle phase

• Minimize data transfers by partitioning data on the 
same intermediate key

• Current work in Zenith
• Reduce phase

• Exploit fine-grain parallelism of Reduce tasks
• Current work in Zenith
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Conclusion
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Research Directions

• Basic techniques are not new
• Parallel database machines, shared-nothing cluster
• Data partitioning, replication, indexing, parallel hash 

join, etc.
• But need to scale up

• Much room for research and innovation
• MapReduce extensions
• Dynamic workload-based partitioning
• Data-oriented scientific workflows
• Uncertain data mining
• Content-based IR
• Data privacy
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